The decay parameter and the smallest Dirichlet eigenvalue of a birth-death process
نویسنده
چکیده
منابع مشابه
Nonlinear Eigenvalue Problems in the Stability Analysis of Morphogen Gradients
This paper is concerned with several eigenvalue problems in the linear stability analysis of steady state morphogen gradients for several models of Drosophila wing imaginal discs including one not previously considered. These problems share several common difficulties including the following: (a) The steady state solution which appears in the coefficients of the relevant differential equations ...
متن کاملProposing A stochastic model for spread of corona virus dynamics in Nigeria
The emergence of corona virus (COVID-19) has create a great public concern as the outbreak is still ongoing and government are taking actions such as holiday extension, travel restriction, temporary closure of public work place, borders, schools, quarantine/isolation, social distancing and so on. To mitigate the spread, we proposed and analyzed a stochastic model for the continue spread of coro...
متن کاملRepresentations for the Decay Parameter of a Birth-Death Process Based on the Courant-Fischer Theorem
Abstract. We study the decay parameter (the rate of convergence of the transition probabilities) of a birth-death process on {0, 1, . . . }, which we allow to evanesce by escape, via state 0, to an absorbing state -1. Our main results are representations for the decay parameter under four different scenarios, derived from a unified perspective involving Karlin and McGregor’s representation for ...
متن کاملDecay towards the overall-healthy state in SIS epidemics on networks
The decay rate of SIS epidemics on the complete graph KN is computed analytically, based on a new, algebraic method to compute the second largest eigenvalue of a stochastic three-diagonal matrix up to arbitrary precision. The latter problem has been addressed around 1950, mainly via the theory of orthogonal polynomials and probability theory. The accurate determination of the second largest eig...
متن کاملA RESEARCH NOTE ON THE SECOND ORDER DIFFERENTIAL EQUATION
Let U(t, ) be solution of the Dirichlet problem y''+( t-q(t))y= 0 - 1 t l y(-l)= 0 = y(x), with variabIe t on (-1, x), for fixed x, which satisfies the initial condition U(-1, )=0 , (-1, )=1. In this paper, the asymptotic representation of the corresponding eigenfunctions of the eigen values has been investigated . Furthermore, the leading term of the asymptotic formula for ...
متن کامل